PRODUÇÃO ACADÊMICA Repositório Acadêmico da Graduação (RAG) TCC Medicina
Use este identificador para citar ou linkar para este item: https://repositorio.pucgoias.edu.br/jspui/handle/123456789/2906
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMachado, Annelisa Pimentel Rezende-
dc.creatorCarvalho, Izabella Oliveira-
dc.date.accessioned2021-12-15T14:31:18Z-
dc.date.available2021-12-15T14:31:18Z-
dc.date.issued2020-11-11-
dc.identifier.urihttps://repositorio.pucgoias.edu.br/jspui/handle/123456789/2906-
dc.description.abstractAlzheimer's disease (AD) is one of the world's leading dementias and is characterized as a progressive and chronic disorder that leads to the destruction of cholinergic neurons. The clinical picture involves a series of gradual events ranging from episodic memory loss to the outcome of memory impairment, behavior and movement performance. This paper aims to address the role of the different inflammatory mechanisms involved in the pathogenesis of Alzheimer's disease, with emphasis on the participation of innate immunity in the process of neurodegeneration. This is a narrative bibliographic review over a 12-year period (2008-2019). The databases searched were electronic data Pubmed (US National Library of Medicine) and Portal Capes, with the following descriptors "Alzheimer Disease, Inflammation, Neuroinflammation, Immunology, Cytokines". Of the 79 references obtained, 27 did not meet the inclusion criteria such as year of publication and content not related to the theme. The pathogenesis of AD is associated with the brain formation of senile plaques, which are extracellular deposits of the amyloid β peptide and intracellular neurofibrillary tangles consisting mainly of hyperphosphorylated tau protein. Astrocytes and activated microglia are characteristically found near the senile plaques, evidencing the participation of elements of the immune system in neuroinflammation and neurodegeneration. There are several factors that can activate the inflammatory pathways in AD, such as genetic mutations, environmental, emotional conditions, age and lifestyle. From such stimuli there is a cyclic process in which innate immunity cells such as microglia and astrocyte release proinflammatory molecules such as cytokines, free radicals, neurotoxins thus creating a chronic inflammatory state contributing to cell dysfunction and death with consequent progression of AD.pt_BR
dc.description.sponsorshipNão recebi financiamentopt_BR
dc.languageporpt_BR
dc.publisherPontifícia Universidade Católica de Goiáspt_BR
dc.relationRecurso dos próprios autores.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectNeuroinflamaçãopt_BR
dc.subjectDoença de Alzheimerpt_BR
dc.subjectResposta imunept_BR
dc.subjectImunopatologiapt_BR
dc.titleNeuroinflamação na doença de Alzheimer: uma revisão da literaturapt_BR
dc.title.alternativeNeuroinflammation in Alzheimer's disease: a literature reviewpt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.contributor.advisor1Rocha Sobrinho, Hermínio Maurício da-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7521-3700pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5573574130526137pt_BR
dc.contributor.referee1Rocha Sobrinho, Hermínio Maurício da-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5573574130526137pt_BR
dc.description.resumoA doença de Alzheimer (DA) é umas das principais demências do mundo, sendo caracterizada como uma desordem progressiva e crônica que leva a destruição de neurônios colinérgicos. O quadro clínico envolve uma série de eventos graduais desde a perda de memória episódica até o desfecho de deterioração da memória, do comportamento e da execução de movimentos. O presente artigo teve como objetivo abordar o papel dos diferentes mecanismos inflamatórios envolvidos na patogênese da doença de Alzheimer, com ênfase na participação da imunidade inata no processo de neurodegeneração. Trata-se de uma revisão bibliográfica narrativa, no período de 12 anos (2008-2019). As bases de dados para busca foram dados eletrônica Pubmed (US National Library of Medicine) e Portal Capes, com os seguintes descritores “Alzheimer Disease, Inflammation, Neuroinflammation, Immunology, Cytokines”. Das 79 referências obtidas, 27 não apresentaram os critérios de inclusão como o ano da publicação e conteúdo não relacionado ao tema. A patogenia da DA associa-se à formação cerebral das placas senis, que são depósitos extracelulares do peptídeo β amiloide e emaranhados neurofibrilares intracelulares constituídos principalmente por proteína tau hiperfosforilada. Astrócitos e micróglias ativados são caracteristicamente encontrados próximos às placas senis, evidenciado a participação de elementos do sistema imune na neuroinflamação e neurodegeneração. Vários são os fatores capazes de ativar as vias inflamatórias na DA, como mutações genéticas, condições ambientais, emocionais, idade e hábitos de vida. A partir de tais estímulos há um processo cíclico em que células da imunidade inata como a micróglia e o astrócito liberam moléculas pró-inflamatórias como citocinas, radicais livres, neurotoxinas criando assim um estado inflamatório crônico contribuindo para a disfunção e morte celular com consequente progressão da DA.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentEscola de Ciências Médicas, Farmacêuticas e Biomédicaspt_BR
dc.publisher.initialsPUC Goiáspt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::NEUROLOGIApt_BR
dc.relation.references1. Holtzman DM, John CM, Goate A. Alzheimer’s disease: The challenge of the second century. SciTransl Med. 2011;3(77):77. 2. Neto HA (org.). A Disease Called Alzheimer. Mirabilia Medicinæ 09 (2017/2). V UNESC Medical Humanities Seminar V Seminário UNESC de Humanidades Médicas V Seminário UNESC de Humanidades Médicas Jul-Dez 2017/ISSN 1676-5818. 3. Korolev IO. Alzheimer’s Disease: A Clinical and Basic Science Review. Medical Student Research Journal. 2014;4(Fall):24-33 4. Querfurth HW, LaFerla FM. Alzheimer’s disease. N. Engl. J. Med. 2010;362:329–344. 5. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1);59-70. 6. Oboudiyat C, Glazer H, Seifan A, Greer C, Isaacson RS. Alzheirmer’s disease. Semin Neurol. 2013;33(4):313-19. 7. Sereniki A, Vital MABF. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Rev Psiquiatr RS. 2008;30(1 Supl). 8. Takada LT. Imunidade inata e inflamação na patogênese da doença de Alzheimer. Arq. Neuro-Psiquiatr. 2017;75(9). 9. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358-72. 10. Heneka, MT et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14(4):388-405. 11. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):114. 12. Altmann A, Tian L, Henderson VW, Greicius MD. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–573. 13. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, et al. TREM2 variants in Alzheimer's disease. N Engl Med. 2013;368(2):117-127. 14. Jiang T, Yu JT, Zhu XC, Tan MS, Gu LZ, Zhang YD, Tan L. Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging. 2014;35(6):1243-51. 15. Adwan L, Zawia NH. Epigenetics: A novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacology and Therapeutics. 2013;139(1):41–50. 16. Cacabelos R, Torrellas C. Epigenetics of aging and alzheimer’s disease: Implications for pharmacogenomics and drug response. International Journal of Molecular Sciences. 2015;16(12):30483–30543. 17. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–71. 18. Heneka, MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nature Immunology. 2015;16(3):229–236. 19. Heneka MT, Kummer MP, Latz E. Innate immune activation inneurodegenerative disease. Nature Reviews Immunology. 2014;14:463–477 20. Trudler D, Farfara D, Frenkel D. Toll-like receptors expression signaling in glia cells in neuro-amyloidogenic diseases: Towards future therapeutic application. Mediators Inflamm. 2010:497987. 21. Gadoth N, Gobel HH. Oxidative Stress and Free Radical Damage in Neurology. Humana Press. 2011. 22. Couturier J, Page G, Morel M, Gontier C, Claude J, Pontcharraud R, Fauconneau B, Paccalin M. Inhibition of double-stranded RNA-dependent protein kinase strongly decreases cytokine production and release in peripheral blood mononuclear cells from patients with Alzheimer's disease. J Alzheimers Dis. 2010;21(4):1217-1231. 23. Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, VanKooyk Y. Neuroinflammation: micróglia and T cells get ready to tango. Front Immunol. 2017;8:1905. 24. Kinoshita D. Alterações do sistema imunológico relacionadas ao envelhecimento e suas consequências. Revista da Universidade Ibirapuera - São Paulo. 2014;6:11-19 25. Bajramovic JJ. Regulation of innate immune responses in the central nervous system. CNS Neurol Disord Drug Targets. 2011;10(1):4-24 26. Gonçalves MV. Caracterização da resposta imune periférica na doença de Alzheimer. Dissertação de mestrado em Bioquímica, apresentada ao Departamento Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. 2012. 27. Tejera D, Heneka MT. Microglia in Alzheimer’s disease: the good, the bad and the ugly. Curr Alzheimer Res. 2016;13(4):370-80. 28. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, et al. Astrocytes: implications forneuroinflammatory pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 2011;8(1): 67-80. 29. Bhamra MS, Ashton NJ. Finding a pathological diagnosis for Alzheimer's disease: areinflammatory molecules the answer? Electrophoresis. 2012;33(24):3598-607. 30. Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, et al. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J. Neurochem. 2016;138:653–693. 31. Guillot-Sestier MV, Town T. Innate immunity in Alzheimer’s disease: a complex affair. CNS Neurol Disord Drug Targets. 2013;12(5):593-607. 32. Unger MS, Marschallinger J, Kaindl J, Klein B, Johnson M, Khundakar AA, Rossner S, Heneka MT, Couillard-Despres S, Rockenstein E, et al. Double cort inexpression in CD8+ T-cells and microglia at sites of amyloid-beta plaques: A potential role in shaping plaque pathology? Alzheimers Dement. 2018;14(8):1022-37. 33. Marsh SE,Abud EM, Lakatos A, Karimzadeh A, Yeung ST, Davtyan H, Fote GM, Lau L, Weinger JG, Lane TE, Inlay MA, Poon WW, Blurton-Jones M. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci USA. 2016;113:E1316–1325. 34. Cai Z, Hussain MD, Yan L-J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci. 2014;124(5):307-321. 35. Kraft AD, Harry GJ. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011;8(7):2980–3018. 36. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017;35:441–68. 37. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008;60(3):430–40. 38. Martin LJ. Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci. 2012;107:355. 39. Dursun E, Gezen-Ak D, Hanagası H, Bilgic¸ B, Lohmann E, Ertan S, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late on set Alzheimer’s disease, mild cognitive impairment or Parkinson’sdisease. J Neuroimmunol. 2015;15(283):50–7. 40. Payão SLM, Gonc¸alves GM, de Labio RW, Horiguchi L, Mizumoto I, Rasmussen LT, et al. Association of interleukin 1b polymorphisms and haplotypes with Alzheimer’s disease. J Neuroimmunol. 2012;247(1–2):59–62. 41. Eisele YS, Fritschi SK, Hamaguchi T, Obermuller U, Fuger P, Skodras A et al. Multiple factors contribute to the peripheral induction of cerebral beta-amyloidosis. J Neurosci. 2014;34:10264–10273. 42. Bisht K, Sharmaa K, Tremblaya ME. Chronic stress as a risk factor for Alzheimer's disease: Roles of micróglia mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress. 2018;9:9–21. 43. Lim SL, Rodriguez-Ortiz CJ, Kitazawa M. Infection, systemic inflammation, and Alzheimer’s disease. Microbes Infect. 2015;17(8):549-556. 44. Saido T, Leissring MA. Proteolytic degradation of amyloid beta-protein. Cold Spring Harb. Perspect. Med. 2012;2(6):a006379. 45. Barber RC. The genetics of Alzheimer's disease. Scientifica (Cairo). 2012;2466210. 46. Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget. 2017;8(69):114393–413. 47. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J.Amyloid-beta: a crucial factor in Alzheimer's disease. Med PrincPract. 2015;24(1):1-10. 48. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O’Banion MK. Sustained interleukin-1 over expression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci. 2013;33(11):5053–64. 49. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013;13(6):397–411. 50. Cox DJ, Field RH, Williams DG, Baran M, Bowie AG, Cunningham C, Dunne A. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia. 2015;63(5):812–25. 51. SaresellaM, La Rosa F, Piancone F, et al. The NLRP3 and NLRP1 inflammasomesare activatedin Alzheimer’s disease. Mol. Neurodegener. 2016;11:23. 52. Koistinaho J, Malm T, Goldsteins G. Glycogensynthase kinase-3beta: a mediator of inflammation in Alzheimer's disease? Int J Alzheimers Dis 2011:129753. 53. Mahdavi M, Saeedi M, Gholamnia L, Jeddi SAB, Sabourian R, Shafiee A, Foroumadi A, Akbarzadeh T. Synthesis of Novel Tacrine Analogs as Acetylcholinesterase Inhibitors. J. Heterocyclic Chem. 2017;54:384– 390. 54. Viegas FPD, Simões MCR, Rocha MD, Castelli MR, Moreira MS, ViegasJunior C. Doença de Alzheimer: Caracterização, Evolução e Implicações do Processo Neuroinflamatório. Rev. Virtual Quim. 2011;3(4):286-306. 55. Stanley M, Macauley S, Holtzman D. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J. Exp. Med. 2016;213(8):1375–1385. 56. Sims-Robinson C, Kim B, Rosko A, Feldman E. How does diabetes accelerate Alzheimer disease pathology? Nat. Rev. - Neurol. 2011;6(10):551–559. 57. Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol. 2013; 108:21–43. 58. Thanthaeng N, Poulose SM, Miller MG, Shukitt-Hale B. Preserving brainfunction in aging: The anti-glycative potential of berry fruit. Neuromolecular Medicine. 2016;18(3):465–473. 59. Uribarri J, delCastillo MD, de laMaza MP, Filip R, Gugliucci A, Luevano-Contreras C, et al. Dietary advanced glycation end products and theirrole in health and disease. Advances in Nutrition. 2015;6(4):461–473. 60. Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, Brandt J, Craft S, Evans DE, Green RC, Ismail MS, Martin BK, Mullan MJ, Sabbagh M, Tariot PN, ADAPT Research Group. Extended results of the Alzheimer’s diseaseanti-inflammatory prevention trial. Alzheimer’s & Dementia. 2011;7(4):402–411.pt_BR
dc.degree.graduationMedicina-
dc.degree.levelGraduação-
Aparece nas coleções:TCC Medicina

Arquivos associados a este item:
Arquivo TamanhoFormato 
Artigo Neuroinflamação na doença de Alzheimer.pdf230,38 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

Ferramentas do administrador