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Abstract—The water flow is an important information for
the study of the energy production as well as management
and hydropower control. The forecast of future information
scenarios allows to take advanced actions in order to optimize
electricity generation. This work proposes a model to generate a
forecast of water flow based on a Recurrent Neural Network,
more specifically the long short-term memory (LSTM) type.
The dataset used to validate the LSTM model is obtained from
flow history of Jirau Hydroelectric Power Plant, installed on the
Madeira River in the state of Rondônia, Brazil. The model was
trained and tested on one-day time-step resolution. Experimental
results shows a lower error according its predictive capacity. The
resulted forecast was evaluated by operating staff ex-perts, from
Jirau Hydroelectric Power Plant, which attested the results can
be used in real operation scenario. It is concluded that LSTM
model is a good strategy for the forecast of water flow for the
study of hydroelectric turbine efficiency.

Index Terms—Water Flow Forecasting, Energy, Recurrent
Neural Network, RNN, Long Short-Term Memory, LSTM.

I. INTRODUCTION

Hydroelectric production is normally scheduled with respect
to demand in power network at any time [1]. At hydroelectric
power plant, regulating streamflow is an important strategy to
optimize energy production. Electricity is supplied to system
according to prompt demand [2]. In this way, it is possible
to control flow of water through the spillway and turbine
in order to maximize power in long run [3]. This entire
system is dependent on the water flow of the river. Therefore,
future predictions of this information are necessary to optimize
streamflow control of reservoir and generation of electricity
[4]–[8].

Large benefits in forecasting water flow is to reduce the risk
in decision making [9]. Information regarding stream flow,
at any given point of interest, is necessary in analysis and
operation of reservoir [10], [11]. However, reservoir operation
is not an universal system, each hydroelectric installation has
its specific restriction. Therefore, it is necessary to understand

a particular system to determine optimal reservoir operation
for each hydroelectric installation [12], [13]. Moreover, a
successful water management requires accurate streamflow
forecasting.

Several studies have demonstrated effectiveness of neural
network to forecast floods and water flow at hydroeletric
installation. Pierini et al. [14] proposed predictions using
autoregressive an neural network models of water flows in
Colorado River, Argentina. Chang et al. [15] proposed a
recurrent learning strategy to forecast a two-step-ahead real-
time streamflow of Da-Chia River in Taiwan. Kumar et al.
[16] compared two different architectures for Hemavathi river
in India. Wu et al. [17] proposed an context-aware long-
term memory (CALSTM) to predict the flow rate at the river
Changhua, China. Yang et al. [18] use a Recurrent Neural
Network (RNN) for inflow reservoir forecast of Chao Phraya
River in Thailand. Aljahdali et al. [19] compared a feedfoward
and RNN for Black and Gila rivers in USA.

Le et al. [20], proposed a long short-term memory (LSTM)
RNN model for flood forecasting, where the daily discharge
and rainfall were used as input data. The authors combined two
different input data sets from the Hoa Binh dam, located at
Da River, in Vietnam. The model resulted in one-day, two-day,
and three-day flowrate forecasting ahead at Hoa Binh Station.
The Nash–Sutcliffe efficiency (NSE) reached 99%, 95% e
87% corresponding to three forecasting cases, respectively.
The findings of this study suggest the model is a viable option
for flood forecasting on the Da River in Vietnam.

In this paper it is proposed a LSTM RNN model to forecast
the streamflow per day. The method uses a decomposition
techniques to preprocessing data and a LSTM RNN to forecast
30 days ahead streamflow. The data used were obtained from
Jirau Hydroelectric Power Plant, installed on Madeira River in
state of Rondônia, Brazil. The Jirau power plant is managed
by Energia Sustentável do Brasil (ESBR) consortium.
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II. LONG SHORT TERM MEMORY

Long-short-term memory (LSTM) is a recurrent artificial
neural network (RNN) architecture used in context of deep
learning. LSTM has feedback connections to data streams
such as non-segmented handwriting recognition and speech
recognition. The LSTM remembers values at arbitrary intervals
and is suitable for predicting time series with time intervals
of unknown duration [21].

The LSTM network model correspond to memory cells
composed by self-loops and three regulators of the information
flow inside the cell. The self-loops are responsible to store
temporal information encoded on the cell state. The three reg-
ulators: input gate (ig), forget gate (fg), and output gate (og),
are responsible for writing, erasing and reading information
from the cells memory state through network. The LSTM
architecture of memory cell is depicted in Fig 1. One cell
operation is expressed by (1) through (6).

Fig. 1: LSTM cell according to [22]

ig = sigm(xtVi + ht−1Wi + bi) (1)
fg = sigm(xtVf + ht−1Wf + bf ) (2)
og = sigm(xtVo + ht−1Wo + b0) (3)

C̃t = tanh(xtVc + ht−1Wc + bu) (4)
Ct = ig � C̃t + fg � Ct−1 (5)

ht = og ◦ tanh(Ct) (6)

In (1) through (6), ht is a vector which denotes the hidden
state of the cell. Likewise, Ct is the cell state and C̄t is the
candidate cell state at time step t which captures the important
information to be persisted through to future. Meanwhile,
Wi,Wo,Wf ,Wc denote the weight matrices of the input
gate, output gate, forget gate and the cell state, respectively.
Similarly, Vi, Vo, Vf , Vc and bi, bo, bf , bc denote, respectively
weight matrices and bias vectors for the current input xt.

In LSTM, input gate (ig) uses a sigmoid function as a
switch, whose off/on state depends on the current input and
previous output, as defined in (1). If the ig is close to zero,
the update signal is multiplied by zero, and the state will not
be affected by update as in (5) The output gate (og), defined
in (3), and forget gate works (fg), defined in in (2), operates
in similar way.

III. CASE STUDY

This study uses data from Madeira River, provided by
Jirau Hydroelectric Power Plant. The Madeira River is located
in north of Brazil. This river has enormous hydroelectric
potential, with flow rates reaching 60,000m3/s. Due to local
geography, being predominantly plain, dams built on this river
have a low nominal fall, approximately 15 meters. A creative
solution to take advantage of the river’s hydroelectric potential
was to place a large number of turbines with lower power. In
case of Jirau Plant, there are 50 generating units. The Energia
Sustentável of Brasil (ESBR) consortium is responsible for
manage Jirau Plant and has provided dataset used for testing,
model configuration and evaluation.

A. Dataset

The dataset consists of 1350 measurements of water flow
history from 01/01/2016 to 12/09/2019 with one-day reso-
lution. The data were preprocessed with transformation to a
logarithmic scale and normalization. This process provide to
structure data in a scale of common magnitude and stabilize
variance as data has high value [22], [23]. Equation (7)
correspond o transformation step,

zt =

{
log(dt), min(d) > 0;

log(dt+1), min(d) = 0;
(7)

where d is dataset; min(d) is lower value from dataset; dt is a
sample from dataset at time t, and zt is sample at time t after
variance stabilization. Wile, (8) correspond to normalization
preprocessing step,

it =
(zt − z̄)
σ(zt)

(8)

where it is normalized sample at time t from dataset, zt
is measured sample with variance stabilized on time t; z̄
is measured sample, and σ(zt) is standard deviation from
samples.

Fig. 2 shows original and processed dataset. As depicted
in Fig. 2(a), dataset has high magnitude (×104) and signifi-
cant differences in variance over time horizon. The resulted
preprocessing dataset is depicted in Fig. 2(b). One can notice
that data contains more uniform measures, contributing to time
series forecasting.

After the preprocessing steps, the overall dataset of 1350
measurements was divided in two sets. First n = 1320
measurements for a training set and last 30 for testing set.

B. LSTM proposed model

The training set of proposed model uses a moving window
(MW) approach to sample time series dataset, as depicted in
Fig. 3. The MW strategy transforms observations of entire
time series into pairs of input (xt) and output (yt) samples of
LSTM cell. For the size of MW, it is subsample three data
measures for input (xt) to generate a predicted output (ŷt) to
be evaluated by real measurement (yt).

Since training dataset has 1320 measurements, there will be
a total of 439 MW. This configuration was empirically defined,



Fig. 2: Original (a) and processed (b) water flow dataset

Fig. 3: Moving window of the time series dataset

in order to best fit this set of data. These frames are generated
based in multi-input multi-output (MIMO) principle used in
multi-step forecasting, which predicts all future observations
up to intended forecasting horizon [22], [23]. To this work, a
variation of MIMO model was used with multiple inputs, tree
steps of temporal series xt and single output, yt, as shown in
(9).

xt = {it it+1 it+2}
yt = {it+3}

(9)

For training model, it was used optimizer algorithm Adam
[24], due to its better performance according to literature [22],
[25]. Initially it was empirically set 250 epochs and a learning
rate starting at 0.005, reducing to 0.001 after 125 epochs. This
reduction together with gradient limit set to 1 was necessary
in order to prevent gradient explosion.

Fig. 4 depicts a schematic representation for testing the
proposed model. In first iteration (t1), last two measures of
training dataset are used to obtain two predicted outputs. The
second iteration (t2) uses last training measure as an input

together with the first value predicted in previous iteration, to
predict a new two outputs. From third iteration (t3) onwards,
first value predicted in first iteration will be used together with
first value of second iteration to predict a new two outputs.
In summary, to predict a new output, first predictions from
two past iterations are used. The second prediction from the
two past iterations are always discarded. This procedure was
performed to entire testing dataset, resulting in a 30 days
forecast.

Fig. 4: Windows moving to make predict

C. Evaluation of LSTM models

Predictive ability of proposed LSTM model was evaluated
by three different criteria. They were root mean square error
(RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (10)

Mean absolute error (MAE)

MAE =
1

N

N∑
i=1

|ŷi − yi|, (11)

and determination coefficient (R2)

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

, (12)

where N is the amount of data, ŷi predicted value, yi measured
value, ȳi average of measured values.

The magnitudes of errors are aggregated with RMSE, MAE
and R2 as a single measure of predictive power. They were
used to measure accuracy for forecasting errors of different
LSTM units for training and testing for the water flow datasets.
One value of RMSE equal to zero indicates a perfect fit for
the data. However, a lower RMSE is better than a higher
one. On other hand, MAE was used to measure forecast
error that contributes in proportion with the absolute value
of error. Absolute value is important because it doesn’t allow
for any form of cancellation of error values. MAE will lead
to forecasts of median while RMSE will lead to forecasts of



mean. R2 is a coefficient that shows the relationship between
the variance of prediction and total variance of data. The closer
to one, more correlated variances are, which indicates that the
model is valid for prediction.

IV. EXPERIMENTAL RESULTS

The proposed model was evaluated by training and test in
nine different architecture. Table I shows average results of 30
realizations on training and testing datasets. The RMSE, MAE
and R2 it present for nine different numbers of LSTM units.

TABLE I: Average results of 30 realizations on training and
testing datasets for 30 days forecast

Dataset Units RMSE MAE R2

5 0.1303 0.0963 0.7656
10 0.1260 0.0928 0.7972
25 0.1214 0.0896 0.8022
50 0.1203 0.0888 0.8110

Training 75 0.1200 0.0882 0.8078
100 0.1223 0.0896 0.8076
150 0.1217 0.0898 0.8084
250 0.1208 0.0892 0.8259
500 0.1227 0.0905 0.8196
5 0.3547 0.2945 0.2512

10 0.2320 0.1956 0.5524
25 0.1040 0.0858 0.8282
50 0.0962 0.0792 0.8519

Testing 75 0.0997 0.0818 0.8407
100 0.1152 0.0946 0.7913
150 0.2441 0.2041 0.6157
250 0.2318 0.1914 0.5638
500 0.2130 0.1793 0.5480

One can notice that, the best values of RMSE, MAE and R2

for training dataset were obtained using between 50 and 75
LSTM units. By increasing or decreasing this amount, there
is a worsening of such errors. For training set, the best result
found for three errors simultaneously was using 50 LSTM
units, as shown in Table I (bold). Therefore, 50 units were
considered a good choice for having obtained the best results
in the prediction on the test data, and thus greatest potential
for generalization of tested scenarios is expected.

Fig. 5 and 6 shows prediction on training and testing dataset,
respectively using proposed model. The results were obtained
using best prediction among 30 realization for fifty LSTM
units. This number of units was chosen because it provides best
performance in three errors simultaneously, as shown in Table
I. It can be seen that proposed model is able to produce results
close to real measurements on training and testing dataset.

The forecast obtained with proposed LSTM model fits with
real water flow curve. Parameters tuning during model training
provided adjustments of model to produce results compatible
with real dataset curve. From magnitude of RMSE, MAE and
R2 errors, it is possible to expect that forecast curve will
keep its excursion within of variation limits of real water flow
curve. The resulted forecast was evaluated by operating staff
experts, from Jirau Hydroelectric Power Plant, which attested
the accuracy of result from proposed model and its value for
analysis of turbine performance, energy production as well as
management and hydropower control.

Fig. 5: Prediction results for the training dataset

Fig. 6: Prediction results for the testing dataset

V. CONCLUSION

This paper presents an LSTM based neural network for
building a water flow forecasting of a hydroelectric power
plant. This model was trained and tested using a dataset with
one-day resolution obtained from flow history of Madeira
River. The predictive capacity of proposed model was tested
in terms of RMSE, MAE and R2, resulting in low errors for
training and test sets. The number of LSTM units was tested
in different configurations, and best results were obtained with
fifty LSTM units. It can be seen that the average results
obtained with the best configuration of the LSTM model here
proposed can predict values similar to the real values of the
Madeira River. Therefore, it can be concluded that LSTM
based neural network model is a promising approach for water
flow forecasting of Madeira River, and can collaborate for
efficiency studies of Jirau Hidroeletric Power Plant and energy
production as well as hydropower control and management.
For future works, it is necessary to study other configurations
of the neural network, such as the use of multiple LSTM
layers and other deep learning strategies to improve the



generalization of the model.
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